Edexcel Maths M1

Topic Questions from Papers

Vectors

- 7. Two ships P and Q are travelling at night with constant velocities. At midnight, P is at the point with position vector $(20\mathbf{i} + 10\mathbf{j})$ km relative to a fixed origin O. At the same time, Q is at the point with position vector $(14\mathbf{i} 6\mathbf{j})$ km. Three hours later, P is at the point with position vector $(29\mathbf{i} + 34\mathbf{j})$ km. The ship Q travels with velocity $12\mathbf{j}$ km h⁻¹. At time t hours after midnight, the position vectors of P and Q are \mathbf{p} km and \mathbf{q} km respectively. Find
 - (a) the velocity of P, in terms of \mathbf{i} and \mathbf{j} ,

(2)

(b) expressions for \mathbf{p} and \mathbf{q} , in terms of t, \mathbf{i} and \mathbf{j} .

(4)

At time t hours after midnight, the distance between P and Q is d km.

(c) By finding an expression for \overrightarrow{PQ} , show that

$$d^2 = 25t^2 - 92t + 292. ag{5}$$

Weather conditions are such that an observer on P can only see the lights on Q when the distance between P and Q is 15 km or less. Given that when t = 1, the lights on Q move into sight of the observer,

(d) find the time, to the nearest minute, at which the lights on Q move out of sight of the observer.

(5)

N16740A

14

Question 7 continued		Lea blaı	
aconon / continued			
	(Total 16 marks)		
	TOTAL FOR PAPER: 75 MARKS		
(Total 16 marks)			

N16740A 16

8.	[In this question, the unit vectors ${\bf i}$ and ${\bf j}$ are horizontal vectors due east and north respectively.]
	At time $t = 0$, a football player kicks a ball from the point A with position vector $(2\mathbf{i} + \mathbf{j})$ m on a horizontal football field. The motion of the ball is modelled as that of a particle moving horizontally with constant velocity $(5\mathbf{i} + 8\mathbf{j})$ m s ⁻¹ . Find
	(a) the speed of the ball, (2)
	(b) the position vector of the ball after t seconds. (2)
	The point B on the field has position vector $(10\mathbf{i} + 7\mathbf{j})$ m.
	(c) Find the time when the ball is due north of B . (2)
	At time $t = 0$, another player starts running due north from B and moves with constant speed $v \text{ m s}^{-1}$. Given that he intercepts the ball,
	(d) find the value of v . (6)
	(e) State one physical factor, other than air resistance, which would be needed in a refinement of the model of the ball's motion to make the model more realistic. (1)

Question 8 continued		blan
Carrier o communica		
		C
	(Total 13 marks)	
	TOTAL FOR PAPER: 75 MARKS	
END		

6.	[In this question the horizontal unit vectors ${\bf i}$ and ${\bf j}$ are due east and due no respectively.]	rth
	A model boat A moves on a lake with constant velocity $(-\mathbf{i} + 6\mathbf{j}) \mathrm{m s^{-1}}$. At time $t = 0$, A at the point with position vector $(2\mathbf{i} - 10\mathbf{j}) \mathrm{m}$. Find	A is
	(a) the speed of A ,	(2)
	(b) the direction in which A is moving, giving your answer as a bearing.	(3)
	At time $t = 0$, a second boat B is at the point with position vector $(-26\mathbf{i} + 4\mathbf{j})$ m.	
	Given that the velocity of B is $(3\mathbf{i} + 4\mathbf{j}) \mathrm{m s^{-1}}$,	
	(c) show that A and B will collide at a point P and find the position vector of P.	(5)
	Given instead that B has speed 8 m s ⁻¹ and moves in the direction of the vector $(3\mathbf{i} + 4$	j),
	(d) find the distance of B from P when $t = 7$ s.	(6)
		_
		_

uestion 6 continued		
		-
		_
		_
		_
		_
		_
		_
		_
		-
		_
		_
		-
		-
		-
		-
		-
		-
		-
		-
		-
		-
		-
		-
		-
		-
		-
		-
		-
		-

7.	[In this question the unit vectors \mathbf{i} and \mathbf{j} are due east and north respectively.]
	A ship S is moving with constant velocity $(-2.5\mathbf{i} + 6\mathbf{j}) \mathrm{km} \mathrm{h}^{-1}$. At time 1200, the position vector of S relative to a fixed origin O is $(16\mathbf{i} + 5\mathbf{j}) \mathrm{km}$. Find
	(a) the speed of S,
	(2)
	(b) the bearing on which <i>S</i> is moving.
	(2)
	The ship is heading directly towards a submerged rock R . A radar tracking station calculates that, if S continues on the same course with the same speed, it will hit R at the time 1500.
	(c) Find the position vector of R . (2)

The tracking station warns the ship's captain of the situation. The captain maintains S on its course with the same speed until the time is 1400. He then changes course so that S moves due north at a constant speed of 5 km h⁻¹. Assuming that S continues to move with this new constant velocity, find

(d) an expression for the position vector of the ship t hours after 1400,

(4)

(e) the time when S will be due east of R,

(2)

(f) the distance of S from R at the time 1600.

Question 7 continued	
	Q
(Total 15 marks)	Q7
(Total 15 marks) TOTAL FOR PAPER: 75 MARKS END	Q7

Leave	
blank	

(a) the acceleration of P in terms of i and j , (b) the magnitude of F , (4) (c) the velocity of P at time $t=6$ s. (3)	•	A particle <i>P</i> of mass 2 kg is moving under the action of a constant force F newtons. When $t = 0$, <i>P</i> has velocity $(3\mathbf{i} + 2\mathbf{j})$ m s ⁻¹ and at time $t = 4$ s, <i>P</i> has velocity $(15\mathbf{i} - 4\mathbf{j})$ m s ⁻¹ . Find
(b) the magnitude of \mathbf{F} , (c) the velocity of P at time $t = 6$ s.		
(c) the velocity of P at time $t = 6$ s.		(2)
(c) the velocity of P at time $t = 6$ s.		(b) the magnitude of F ,
		(4)
		(c) the velocity of P at time $t = 6$ s.
		(3)
	_	

- 7. A boat B is moving with constant velocity. At noon, B is at the point with position vector $(3\mathbf{i} 4\mathbf{j})$ km with respect to a fixed origin O. At 1430 on the same day, B is at the point with position vector $(8\mathbf{i} + 11\mathbf{j})$ km.
 - (a) Find the velocity of B, giving your answer in the form $p\mathbf{i} + q\mathbf{j}$.

(3)

At time t hours after noon, the position vector of B is \mathbf{b} km.

(b) Find, in terms of t, an expression for \mathbf{b} .

(3)

Another boat C is also moving with constant velocity. The position vector of C, \mathbf{c} km, at time t hours after noon, is given by

$$c = (-9i + 20j) + t(6i + \lambda j),$$

where λ is a constant. Given that C intercepts B,

(c) find the value of λ ,

(5)

(d) show that, before C intercepts B, the boats are moving with the same speed.

Question 7 continued		
	(Total 14 marks)	Q7

6.	[In this question, the unit vectors \mathbf{i} and \mathbf{j} are due east and due north respectively.]	
	A particle P is moving with constant velocity $(-5\mathbf{i} + 8\mathbf{j})$ m s ⁻¹ . Find	
	(a) the speed of P ,	2)
	(b) the direction of motion of P , giving your answer as a bearing. (3)	3)
	At time $t = 0$, P is at the point A with position vector $(7\mathbf{i} - 10\mathbf{j})$ m relative to a fixe origin O . When $t = 3$ s, the velocity of P changes and it moves with velocity $(u\mathbf{i} + v\mathbf{j})$ m s ⁻¹ , where u and v are constants. After a further 4 s, it passes through O and continues to move with velocity $(u\mathbf{i} + v\mathbf{j})$ m s ⁻¹ .	y
	(c) Find the values of u and v .	
	(5	5)
	(d) Find the total time taken for <i>P</i> to move from <i>A</i> to a position which is due south of <i>A</i> .	of
		3)
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_

:008		
S.	Leave blank	
2)		
3)		
3)		
_		
_		
_		
_		
_		
_		
_		
_		
_		
_		
_		
_		
_		
_		
_		
_		
_		

A particle P of mass 0.4 kg moves under the action of a single constant force \mathbf{F} new The acceleration of P is $(6\mathbf{i} + 8\mathbf{j})$ m s ⁻² . Find	tons.
(a) the angle between the acceleration and i .	
(w) the unight convicts the decention who is	(2)
(b) the magnitude of F .	
	(3)
At time t seconds the velocity of P is \mathbf{v} m s ⁻¹ . Given that when $t = 0$, $\mathbf{v} = 9\mathbf{i} - 10\mathbf{j}$,	
(c) find the velocity of P when $t = 5$.	
	(3)
	(a) the angle between the acceleration and $\bf i$, (b) the magnitude of $\bf F$. At time t seconds the velocity of P is $\bf v$ m s ⁻¹ . Given that when $t=0$, $\bf v=9i-10j$,

Leave	
blank	

Find the value of u .	
	(5)

- **6.** Two forces, $(4\mathbf{i} 5\mathbf{j})$ N and $(p\mathbf{i} + q\mathbf{j})$ N, act on a particle P of mass m kg. The resultant of the two forces is **R**. Given that **R** acts in a direction which is parallel to the vector $(\mathbf{i} 2\mathbf{j})$,
 - (a) find the angle between \mathbf{R} and the vector \mathbf{j} ,

(3)

(b) show that 2p + q + 3 = 0.

(4)

Given also that q = 1 and that P moves with an acceleration of magnitude $8\sqrt{5}$ m s⁻²,

(c) find the value of m.

(7)

estion 6 continued	

2. A particle is acted upon by two forces \mathbf{F}_1 and \mathbf{F}_2 , given by	
$\mathbf{F}_1 = (\mathbf{i} - 3\mathbf{j}) \mathbf{N},$	
$\mathbf{F_2} = (p\mathbf{i} + 2p\mathbf{j})$ N, where p is a positive constant.	
(a) Find the angle between $\mathbf{F_2}$ and \mathbf{j} .	(2)
The resultant of $\mathbf{F_1}$ and $\mathbf{F_2}$ is \mathbf{R} . Given that \mathbf{R} is parallel to \mathbf{i} ,	
(b) find the value of p.	(4)

(2)

Leave blank

[In this question \mathbf{i} and \mathbf{j} are horizontal unit vectors due east and due north respectively.]

A hiker H is walking with constant velocity (1.2i - 0.9i) m s⁻¹.

(a) Find the speed of *H*.

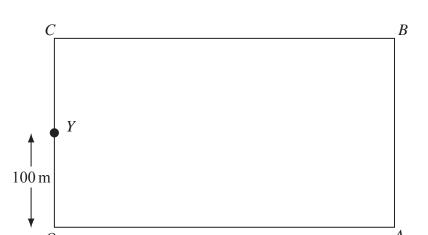


Figure 3

A horizontal field *OABC* is rectangular with *OA* due east and *OC* due north, as shown in Figure 3. At twelve noon hiker H is at the point Y with position vector 100 j m, relative to the fixed origin O.

(b) Write down the position vector of *H* at time *t* seconds after noon.

(2)

At noon, another hiker K is at the point with position vector (9i + 46j) m. Hiker K is moving with constant velocity $(0.75\mathbf{i} + 1.8\mathbf{j})$ m s⁻¹.

(c) Show that, at time t seconds after noon,

$$\overrightarrow{HK} = \left[(9 - 0.45t)\mathbf{i} + (2.7t - 54)\mathbf{j} \right]$$
metres. (4)

Hence,

(d) show that the two hikers meet and find the position vector of the point where they meet.

(5)

Question 8 continued		blaı
	(Total 13 marks)	C
	TOTAL FOR PAPER: 75 MARKS	

7. [In this question, i and j are horizontal unit vectors due east and due north respectively and position vectors are given with respect to a fixed origin.]

A ship S is moving along a straight line with constant velocity. At time t hours the position vector of S is s km. When t = 0, s = 9i - 6j. When t = 4, s = 21i + 10j. Find

(a) the speed of S,

(4)

(b) the direction in which S is moving, giving your answer as a bearing.

(2)

(c) Show that $\mathbf{s} = (3t+9)\mathbf{i} + (4t-6)\mathbf{j}$.

(2)

A lighthouse L is located at the point with position vector $(18\mathbf{i} + 6\mathbf{j})$ km. When t = T, the ship S is 10 km from L.

(d) Find the possible values of T.

(6)

Question 7 continued	blank
	Q7
(Total 14 marks)	
TOTAL FOR PAPER: 75 MARKS	
END	

2010		
	Leave blank	
he ne	Oldin	
5)		
_		
_		
_		
_		
_		
_		
_		
_		
_		
_		
_		
_		

	t

Leave
blank

4.	A particle <i>P</i> of mass 2 kg is moving under the action of a constant force F newtons velocity of <i>P</i> is $(2\mathbf{i} - 5\mathbf{j})$ m s ⁻¹ at time $t = 0$, and $(7\mathbf{i} + 10\mathbf{j})$ m s ⁻¹ at time $t = 5$ s.	The
	Find	
	(a) the speed of P at $t = 0$,	(2)
	(b) the vector \mathbf{F} in the form $a\mathbf{i} + b\mathbf{j}$,	(5)
	(c) the value of t when P is moving parallel to \mathbf{i} .	(4)
		_

Question 4 continued	blank
Question 4 continued	

7.	[In this question i and j are unit vectors	due eas	st and due north	respectively. Position
	vectors are given relative to a fixed origin	ı O.]		

Two ships P and Q are moving with constant velocities. Ship P moves with velocity $(2\mathbf{i} - 3\mathbf{j}) \text{ km h}^{-1}$ and ship Q moves with velocity $(3\mathbf{i} + 4\mathbf{j}) \text{ km h}^{-1}$.

(a) Find, to the nearest degree, the bearing on which Q is moving.

(2)

At 2 pm, ship P is at the point with position vector $(\mathbf{i} + \mathbf{j})$ km and ship Q is at the point with position vector $(-2\mathbf{j})$ km.

At time t hours after 2 pm, the position vector of P is \mathbf{p} km and the position vector of Q is \mathbf{q} km.

- (b) Write down expressions, in terms of t, for
 - (i) **p**,
 - (ii) q,
 - (iii) \overrightarrow{PQ} .

(5)

- (c) Find the time when
 - (i) Q is due north of P,
 - (ii) Q is north-west of P.

(4)

uestion 7 continued	
	(Total 11 marks)
	TOTAL FOR PAPER: 75 MARKS
ENI	

3. Three forces \mathbf{F}_1 , \mathbf{F}_2 and \mathbf{F}_3 acting on a particle P are given by

$$\mathbf{F}_1 = (7\mathbf{i} - 9\mathbf{j}) \text{ N}$$

$$\mathbf{F}_2 = (5\mathbf{i} + 6\mathbf{j}) \text{ N}$$

$$\mathbf{F}_3 = (p\mathbf{i} + q\mathbf{j}) \,\mathrm{N}$$

where p and q are constants.

Given that P is in equilibrium,

(a) find the value of p and the value of q.

(3)

The force \mathbf{F}_3 is now removed. The resultant of \mathbf{F}_1 and \mathbf{F}_2 is \mathbf{R} . Find

(b) the magnitude of **R**,

(2)

(c) the angle, to the nearest degree, that the direction of \mathbf{R} makes with \mathbf{j} .

7.	[In this question, the unit vectors \mathbf{i} and \mathbf{j} are due east and due north respectively. Position
	vectors are relative to a fixed origin O.]

A boat P is moving with constant velocity $(-4\mathbf{i}+8\mathbf{j})$ km h⁻¹.

(a) Calculate the speed of P.

(2)

When t = 0, the boat *P* has position vector $(2\mathbf{i} - 8\mathbf{j})$ km. At time *t* hours, the position vector of *P* is \mathbf{p} km.

(b) Write down \mathbf{p} in terms of t.

(1)

A second boat Q is also moving with constant velocity. At time t hours, the position vector of Q is \mathbf{q} km, where

$$q = 18i + 12j - t(6i + 8j)$$

Find

(c) the value of t when P is due west of Q,

(3)

(d) the distance between P and Q when P is due west of Q.

Question 7 continued	blank
	1

6.	[In this question i and j are horizontal unit vectors due east and due north respectively position vectors are given with respect to a fixed origin.]	and
	A ship S is moving with constant velocity $(-12\mathbf{i} + 7.5\mathbf{j})$ km h ⁻¹ .	
	(a) Find the direction in which S is moving, giving your answer as a bearing.	(3)
	At time t hours after noon, the position vector of S is s km. When $t = 0$, $\mathbf{s} = 40\mathbf{i} - 6\mathbf{j}$.	
	(b) Write down \mathbf{s} in terms of t .	(2)
	A fixed beacon B is at the point with position vector $(7\mathbf{i} + 12.5\mathbf{j})$ km.	

(c) Find the distance of S from B when t = 3

(4)
(d) Find the distance of S from B when S is due north of B.

(4)

estion 6 continued	

6.	[In this question, i and j are horizontal unit vectors due east and due north respectively
	and position vectors are given with respect to a fixed origin.]

A ship sets sail at 9 am from a port P and moves with constant velocity. The position vector of P is $(4\mathbf{i} - 8\mathbf{j})$ km. At 9.30 am the ship is at the point with position vector $(\mathbf{i} - 4\mathbf{j})$ km.

(a) Find the speed of the ship in km h^{-1} .

(4)

(b) Show that the position vector \mathbf{r} km of the ship, t hours after 9 am, is given by $\mathbf{r} = (4 - 6t)\mathbf{i} + (8t - 8)\mathbf{j}$.

(2)

At 10 am, a passenger on the ship observes that a lighthouse L is due west of the ship. At 10.30 am, the passenger observes that L is now south-west of the ship.

(c) Find the position vector of	((c)	Find	the	position	vector	of	L
---------------------------------	---	---	----	------	-----	----------	--------	----	---

(5)

Question 6 continued	blank
Question o continued	

Leave	
hlank	

6.	[In this question \mathbf{i} and \mathbf{j} are horizontal unit vectors due east and due north respectively. Position vectors are given with respect to a fixed origin O .]
	A ship S is moving with constant velocity $(3\mathbf{i} + 3\mathbf{j})$ km h ⁻¹ . At time $t = 0$, the position vector of S is $(-4\mathbf{i} + 2\mathbf{j})$ km.
	(a) Find the position vector of S at time t hours. (2)
	A ship T is moving with constant velocity $(-2\mathbf{i} + n\mathbf{j})$ km h^{-1} . At time $t = 0$, the position vector of T is $(6\mathbf{i} + \mathbf{j})$ km. The two ships meet at the point P .
	(b) Find the value of <i>n</i> .
	(5)
	(c) Find the distance <i>OP</i> .
	(4)

uestion 6 continued		

7. [In this question, the horizontal unit vectors ${\bf i}$ and ${\bf j}$ are directed due east and due north respectively.]

The velocity, \mathbf{v} m \mathbf{s}^{-1} , of a particle P at time t seconds is given by

$$\mathbf{v} = (1 - 2t)\mathbf{i} + (3t - 3)\mathbf{j}$$

(a) Find the speed of P when t = 0

(3)

(b) Find the bearing on which P is moving when t = 2

(2)

- (c) Find the value of t when P is moving
 - (i) parallel to \mathbf{j} ,
 - (ii) parallel to (-i 3j).

(6)

